

Cons I Inserm

Institute for Functional Genomics

L-type Cav1.3 Channels Regulate Ryanodine Receptor-dependent Ca²⁺ Release during Sino-Atrial Node Pacemaker Activity

Angelo Giovanni Torrente^{a-d}, Pietro Mesirca^{a-c,*}, Patricia Neco^{e-g,*}, Riccardo Rizzetto^{a-c, e-h}, Stefan Dubel^{a-c}, Christian Barrere^{a-c}, Martina Sinegger-Brauns^h, Joerg Striessnig^h, Sylvain Richard^{e-f}, Joël Nargeot^{a-c}, Ana Maria Gomez^{e-g}, Matteo Elia Mangoni^{a-c}

^aCNRS, UMR-5203, Institut de Génomique Fonctionnelle, Département de Physiologie, F-34000 Montpellier, France. ^bINSERM, 1191, F-34000 Montpellier, France. ^cUniversité de Montpellier, UMR-5203, F-34000 Montpellier, France. ^dCurrent address: Heart institute Cedars Sinai, Los Angeles, USA . ^eINSERM, U1046, Montpellier, France. ^fCNRS UMR 9214, PhyMedExp, University of Montpellier, France. ^gUMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France. ^hDepartment of Pharmacology and Toxicology, Institute of Pharmacy; Center for Molecular Biosciences, University of Innsbruck, Austria. (*) P.M. and P.N. contributed equally to this work

Introduction and purpose of the study

Aims: Sino-atrial node (SAN) automaticity is an essential mechanism of heart rate generation that is still not completely understood. Recent studies highlighted the importance of intracellular Ca²⁺ ([Ca²⁺]_i) dynamics during SAN pacemaker activity. Nevertheless, the functional role of voltage-dependent L-type Ca²⁺ channels in controlling SAN [Ca²⁺]_i release is largely unexplored. Since Ca_v1.3 is the predominant L-type Ca²⁺ channel isoform in SAN cells, we studied [Ca²⁺]_i dynamics in isolated cells and *ex vivo* SAN preparations explanted from wild-type (WT) and Ca_v1.3 knockout (KO) mice (Ca_v1.3^{-/-}). **Methods and results:** We found that Ca_v1.3 deficiency strongly impaired [Ca²⁺]_i dynamics, reducing the frequency of local [Ca²⁺]_i release events and preventing their synchronization. This impairment inhibited the generation of Ca²⁺ transients and delayed spontaneous activity. We also used action potentials recorded in WT SAN cells as voltage-clamp commands for Ca_v1.3^{-/-} cells. Although these experiments showed abolished Ca²⁺ entry through L-type Ca²⁺ channel in the diastolic depolarization range of KO SAN cells, their sarcoplasmic reticulum Ca²⁺ load remained normal. β-adrenergic stimulation enhanced pacemaking of both genotypes, though Ca_v1.3^{-/-} SAN cells remained slower than WT. Instead, we rescued pacemaker activity in Ca_v1.3^{-/-} SAN cells and intact tissue through caffeine-mediated stimulation of Ca²⁺-induced Ca²⁺-release.

Representative scheme showing all the actors thought to take part in Sinoatrial (SAN) pacemaker activity. This mechanism is probably maintained thanks to the Adenylate-cyclase (AC) activity, which converts ATP in c-AMP. Elevated c-AMP levels have been reported in SAN cells compared to atrial myocites. c-AMP production promotes voltage-dependent opening of f-channels and activates the protein Phospho Kinase A (PKA). PKA phosphorylates different ion channels located on the plasma membrane of pacemaker cells, like L-Type voltage dependent Ca²⁺ channels (LTCC) Ca_v1.3 and Ca_v1.2 channels. c-AMP –mediated activation of membrane channels, increases their currents inducing in this way the diastolic depolarization of SAN cells. On the other side, high phosphorylation of Phospholamban (PLB) and RyRs increment their open probability, increasing the diastolic concentration of Ca²⁺ and engaging Na⁺/Ca²⁺ exchanging (NCX) activity. The inward current generating through this exchange (I_{NCX}), could then help to depolarize SAN cells during the diastolic depolarization phase. β-adrenergic receptor activation further elevates c-AMP and PKA activity, thereby stimulating I_f, I_{Ca,L}, RyR and I_{NCX}, which could contribute to the control of the chronotropic state of SAN cells. We hypothesize that Ca_v1.3 channels interact with RyRs in order to induce the necessary increase of diastolic Ca²⁺ to activate NCX and contribute to complete SAN diastolic depolarization.

(A) Line-scan of WT and $Ca_v 1.3^{-/-}$ single SAN cells. Insets: 3D reconstruction of diastolic $[Ca^{2+}]_i$ release. a.u.=arbitrary units. White arrows indicate late diastolic Local Ca²⁺ Release (LCRs). (B) Time-course of Ca²⁺ fluorescence recorded in (A). Insets: Magnified Ca²⁺ transient of both genotypes. Note the ramp in WT (red line). (C) Amplitude of the ramp in WT (n=10 cells from N=7 mice) and $Ca_v 1.3^{-/-}$ (n=13 cells from N=9 mice). (D) Amplitude of the Ca²⁺ transients in WT (n=32 cells from N=16 mice) and $Ca_v 1.3^{-/-}$ (n=33 cells from N=16 mice). (E) Slope of Ca²⁺ transient upstroke in WT (n=11 cells from N=6 mice) and $Ca_v 1.3^{-/-}$ (n=18 cells from N=6 mice). (F), (G) and (H): amplitude, full duration and full width at half maximum (FDHM and FWHM, respectively) of LCRs recorded in WT (n=10 cells from N=6 mice) and $Ca_v 1.3^{-/-}$ (n=19 cells from N=6 mice). *P<0.05 by unpaired t-test.

(A) Time-courses of Ca²⁺ fluorescence quantified by Fura 2 in WT and $Ca_v 1.3^{-/-}$ single SAN cells, before and after exposure to high concentration of Caff (10 mM). Black ticks indicate electric-field stimulation at 1.5 Hz. (B). (C) and (D): amplitudes, recovery time and fractional SR Ca²⁺ release of the Caffeine (Caff) induced Ca²⁺ transient in WT (n=11 cells from N=3 mice) and $Ca_v 1.3^{-/-}$ (n=15 cells from N=3 mice). P=NS by unpaired t-test.

(A) AP samples applied as voltage command. (B) and (C): sample traces of the corresponding net I_{Ca} in WT and $Ca_v 1.3^{-/-}$ before (Control) and after nifedipine (Nife, 3 µM) perfusion. (D) Magnification of the second AP of (A) with the respective currents recorded in (B) and (C). (E) Total Ca²⁺ influx via I_{Ca} recorded during the whole AP cycle in WT (n=8 cells from N=3 mice) and $Ca_v 1.3^{-/-}$ (n=8 cells from N=2 mice). (F) Diastolic Ca²⁺ influx via I_{Ca} recorded as in (E). *P<0.05, ***P<0.001 by 2-way ANOVA with Sidak post-test.

(A) Examples of time-course Ca²⁺ fluorescence in isolated WT and $Ca_v 1.3^{-/2}$ single SAN cells constantly under ISO (10 nM), before and after perfusion with low dose of Caffeine (Caff; 200 μ M). Dashed lines highlight basal diastolic $[Ca^{2+}]_i$ ($[Ca^{2+}]_{Diastol}$) before Caff (200 μ M) perfusion. (B) Frequency of spontaneous Ca²⁺ transients in single WT (n=6 cells from N=4 mice) and $Ca_v 1.3^{-/2}$ (n=7 cells from N=3 mice) SAN cells treated as in (A). (C) Line scan recorded in the SAN tissue pacemaker region before and after perfusion with Caff (1 mM). (D) Frequency of spontaneous Ca²⁺ transients in SAN tissue of WT (N=6) and $Ca_v 1.3^{-/2}$ (N=8) treated as in (C). *P<0.05, **P<0.01, ***P<0.001 by 2-way ANOVA with Bonferroni's post-test. (E) Changes in $[Ca^{2+}]_{Diastol}$ in WT (n=6 cells from N=4 mice) and $Ca_v 1.3^{-/2}$ (n=7 cells from N=3 mice) after perfusion with Caff (200 μ M). Values on the Y axis were normalized to the $[Ca^{2+}]_{Diastol}$ (dashed line) measured before Caff (200 μ M) perfusion. ***P<0.001 by unpaired t-test.

Conclusions

Our study shows a critical role for Ca_v1.3-mediated I_{Ca,L} in regulating [Ca²⁺]_i release in SAN pacemaker cells. We demonstrated that Ca_v1.3 channels stimulate RyR-dependent [Ca²⁺]_i release during normal SAN pacemaker activity. Given the dual role of Ca_v1.3-mediated I_{Ca,L} in driving inward current during the diastolic depolarization phase and in stimulating RyR-dependent [Ca²⁺]_i release, it is tempting to speculate that these channels constitute an unexplored functional bridge between membrane channels – mediated depolarization (Membrane clock) and Ca²⁺ release – mediated depolarization (Ca²⁺ clock). Supported by the European Union Research Programme 6th FP MRTN-CT-2006 MRTN-CT-20006-035367